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UNIT-1
CLASSIFICATION OF SIGNALS & SYSTEMS

Signal:
¢ Itis a physical quantity which may vary with respect to independent
variables, such as time, frequency, etc.
*¢ In general signal is an information

K/
>
% It is denoted as x(t).

Continuous Time Signal

e It is a signal in which the amplitude can be measured at any time instant
* It is denoted as x(t)
Discrete Time Signal

e It is a signal in which the amplitude can be measured at particular time instant
* It is denoted as x(n)

Representation of Signal:

¢ Functional Representation
o Itis represented in the form of function along with the time domain
notation
1;n=0,1
x(n)=<2;n=2,3

0; else

¢ Graphical Representation
o Itis represented in the form of graphical structure

x(n)
A

2
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¢ Tabular Representation

o Itis represented in the form of tabular structure with the amplitude and the

time specification

112

x(n) | 1
n 0

112

¢ Sequence Representation

o Itis represented in sequence form

o In which arrow mark used to represent the origin position

x(n) ={1,1,2,

Conversion of Analog Signal to Digital Signal

2}

i) Sampling: The process of converting the continuous time signal into

discrete time signal

ii)  Quantization: The process of converting the discrete time signal into

digital signal

A X(1)

\/T[ Sampling ]

A x(n)

v

[ Quantization ]
n

A
L
o
v
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Basic Elementary Signals
It is a basic signals, which is used to test the system performance. So, it is also
called as the Test Signals/Reference Signals

Signal Continuous Time Signal Discrete Time Signal
Unit 1 t=0 1 n=0
o) = . o(n)= .
Impulse 0 ; Otherwise 0 ; Otherwise
Signal
5(t) S
> >
t n
Unit Step = 1;¢>0 ()= 1;n>0
Signal = 0; else = 0; else
u(t)n u(na
> ’ | ’ | | ’ >
t n
Unit Ramp )= t;t>0 (n) = n;n>0
Signal = 0; else = 0; else
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a<0 x(t
A
x(1)
A
Decavina
Necavina ‘ ‘ | | |
| S
t
>
t
a>0| y x(t
A A
R|Smg Risina
? 1l | | ‘ S
t
Rectangula
r Signal 1/ . 1
§ z(t) = A ’ t|£é
0 ; Otherwise
AT (t)
0.5
<€ >
n -0.5 0 0.5
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Transformation of Signals

The changes occur in the time axis of the signal, then it is called as the

transformation of signals.

+ Time Reversal :

The folding of a continuous time signal X(t) is performed by changing the

sign of time base t in the signal x(t). The folding operation produces a signal x(-t) which

is a mirror image of the original signal x(t) with respect to the time origin t=0.

» Continuous Time Signal
" x(@®)=u(-1)

{1;:20
u(t) =

0; else

u(t) A

U(-t)A

» Discrete Time Signal

" x(n)=u(—n)

- 1;n>0
u(n) =
0 else

uin) 'T\

n
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< Time Scaling :
The time scaling is performed by multiplying the variable time by a constant.

% Time Shifting :
The time shifting of a continuous time signal x(t) is performed by replacing
the independent variable t by t-m, to get the time shifted signal x(t-m), where m

represents the time shift in seconds.
» Continuous Time Signal

1. x0)=u@-2)

© 1;¢>20
u =
0; else
U(t)A U(t'z) A
>
>
t t
2. x@)=u(—t-2)
© 1;¢>20
u =
0; else
A
>
u(t) t
A A
u(-t-2)
< <
-t t
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» Discrete Time Signal
1. x(n)=u(n-2)

U(n) A

un-2) 4

012

2. x(n)=u(-n—2)

u(-n) A

< <€
-n n

-2-10

Operation of Signals

The changes occur in the amplitude of the signal, then it is called as the operation
of signals.

% Addition of Signals: Addition of two signals
» 'The addition of two continuous time signals is performed by adding the
value of the two signals corresponding to the same instant of time.
» For Continuous time Signal: y(¢) = x,(¢) + x, ()
» For Discrete Time Signal: y(n) = x,(n) +x,(n)

% Subtraction of Signals: Subtraction of two signals
» 'The addition of two continuous time signals is performed by adding the
value of the two signals corresponding to the same instant of time.
» For Continuous time Signal:  y(r) = x,(r) - x, (¢)
» For Discrete Time Signal:  y(n) = x,(n) - x,(n)

% Multiplication of Signals: Multiplication of two signals
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» The multiplication of two continuous time signals is performed by
multiplying the value of the two signals corresponding to the same instant of
time.

» For Continuous time Signal: () = x,(1)x,(?)

» For Discrete Time Signal:  y(n) = x,(n)x,(n)

Classification of signals

The continuous time signals are classified depending on their characteristics. Some

ways of classifying continuous time signals are,

1. Deterministic and Nondeterministic (Random) signals

2. Periodic and Non periodic signals

3. Symmetric and Anti symmetric signals(Even and Odd signals)
4

. Energy and Power signals

1. Deterministic and Nondeterministic (Random) signals

Deterministic Signals Random Signals
» The signal that can be » The signal whose
completely specified by a characteristics are random in
mathematical equation nature
» The amplitude can be » The amplitude cannot be
measured (or) measured
Characteristics is known » Eg.: noise signals from
» Eg.: Step, Ramp, various sources like
Exponential Signal electronics amplifiers,
oscillators, radio receivers
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Periodic and Non periodic signal

Periodic Signals

Aperiodic Signals

again and again over
certain period of time.

> Satisfies

» Periodic signal will have a
definite pattern that repeats

a

x(t)=x(t+T); x(n)=x(n+N)

» The same information is not
repeated again and again over
a certain period of time.

» Satisfies
x@t)#x(t+T); x(n)#x(n+N)

In periodic signals, the term

T is called the fundamental time period of the signal.
F, Hence inverse of T is called the fundamental frequency(Hz)
21F =Q, is called the fundamental angular frequency (rad/sec)

Proof for Periodic Signals

)

b)

Co-sinusoidal signal
Let, X(t) =AcosQt

S X(@+T)= AcosQ (t+T)=Acos(Qt +€,T)

= Acos(Qt + 2%zT)

=Acos(Qut +27m)=AcosQt = X (1)

Sinusoidal signal
Let, X(t) = AsinQt

S X(t+T)= AsinQ,(1+T) = Asin(Qyt +Q,T)

= Asin(Q,f + 27”T)

= Asin(Qt+27) = Asin Qt = X ()

Complex exponential signal
Let, X(1) = Ae™™

LX@+T)= A’ = A"

'2” . .
= AejQ(’teJ?T = Ae’ e/?”

= Ae’™ (cos 2 + jsin27)] = Ae’™ (1+ jO) = X (1)

Unit-1 : Classification of Signals & Systems
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1. Check whether the given signal is periodic or aperiodic

a.

x(t) =cos407xt
Fundamental Frequency Q, =40rx
QT =2r

27 _ 27 _ 1

Q407 20

o

Fundamental Periodis rational = Periodic Signal

x(t) = cos(407t +1) +sin(307 +1)
Fundamental Frequency Q. , =40x
Fundamental Frequency Q , =30

QT =2n
_27[_272_1

' Q, 40 20

po 2_x
Q, 30 15
1, Yo

? /Szﬂ Ar

Fundamental Period is irrational = Aperiodic Signal

x(n) — ej307rn

Angular Frequency @, =30r

w,=2xf
o 30r
= 9 :—:15
f 2r 2w

Fundamental Frequencyis rational = Periodic Signal

x(n) =sin30n

Angular Frequency @, =30

w,=2xf
o, 30 15
f=r=—=—

2r 27 o«
Fundamental Frequencyis irrational = Aperiodic Signal
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3. Even and Odd Signals

Even Signals Odd Signals
» Symmetric Signals » Asymmetric Signals
» Satisfies x(t) = x(—t); x(n) = x(—n) » Satisfies x(¢) # x(—t) ; x(n) # x(—n)
_x(0)+x(-1) _ x(t)—x(—t)
Xe(t)——2 x, (1) — 5
X () = x(n) +2x(—n) 2y (1) = x(n) —Zx(—n)

Expression of Even & Odd Signals.

1) Continuous time signal
The continuous time signal is composed of even and odd signals
x(t)=x,(t)+x,(1) —>1
put t =—t
x(=t)=x,(=t)+x, (1) -2
x(=t)=x,(t)—x, (1) -3

Adding the equations 1 &3
x(@)+x(=t)=x,()+x,(t)+x,(t)—x,()
X(0)+ x(—1) = 2, (t) 5 %, (1) = w
Subtracting the equations 1 &3
x()—x(=t)=x,()+x,(t)—x,(t)+x,(t)
(1) =2(0) = 25,033, = 20D
i) Discrete Time Signal
The discrete time signal is composed of even and odd signals

x(n)=x,(n)+x,(n) —1

put n=-n
x(-=n)=x,(-n)+x,(-n) -2
x(-=n)=x,(n)—x,(n) -3
Adding the equations 1 &3
x(n)+x(-n)=x,(n)+x, (n)+x,(n)—x,(n)
x(1) + x(=n) = 2x,(n) ; x, (n) = W
Subtracting the equations 1 &3
x(n)—x(-n)=x,(n)+x,(n)—x,(n)+x,(n)
x(n)—x(—n)

x(n)—x(—n) =2x,(n);x,(n) = .
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Determine the even and odd components

1. x(¢t)=cost+sint+costsint
x(t) =cost+sint+costsint
put t=—t

x(—t) = cos(—t) +sin(—t) + cos(—t) sin(—t)

x(—t) =cost—sint —costsint

x(®)+x(-t) _ coSst+sint+coszsint +cost—sint —costsint
x,()=—""F""— =x,()=
2cost
)= =cost
x,(t) > cos
x(t)—x(-t) _ COoSt+sint +costsint —cos? +sin+coszsint
x, (1) == 5 - x, (1) =
2sint+2costsint . ) _ ) sin 2t
x, (1) = ) =sint+sinfcost = x, (t) =sint +
, M= {-2,1,2,-1,3}
' T
n x(n) | x(-n) x.(n) = x(n)+ x(—n) X (1) = x(n) —x(—n)
2 2
-2 -2 3 0.5 -2.5
-1 1 -1 0 1
0 2 2 0
1 -1 1 0 -1
2 3 -2 0.5 2.5

x,(n)={0.5,0,2,0,0.5}

/]\
x,(n) ={-2.5,1,0,-1,2.5)

T

Unit-1 : Classification of Signals & Systems
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4. Energy and Power Signals

Energy Signals Power Signals
» Energy= Finite » Energy= Infinite
» Power=Zero » Power= Finite
T T
E=lim [ |x(t)[ t P=lim— j |x(r)[dr
T—w r T—w ) “r
N 2
E = }/1{)1010 n;V|x(n)| = Zlvl_rgW Z |x(n)|

Neither energy nor power signals

The signals that do not satisfy the conditions of either energy or power signals are

called neither energy nor power signals.

T
The energy of a signal x(t) is defined as, E = lim I |x(t)|2dt
-T

The power of a signal x(t) is defined as,
Ery
T 2 I 1
-.j|X(t)|2 dt = jl%fz:[t]zT L _(_L =T, P= Lt —xE
J ) ) 2 750 2T

T2

In equation when E=constant,

P=Ex Lt L:Ex
T—o QT 2 X0

=Ex0=0

From the above analysis , we can say that when a signal has finite energy the power
will be zero. Also , from the above analysis we can say that the power is finite only when
energy is infinite.
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Determine the power and energy for the following continuous time signals.

a) x(t)=e2tu(t)

. 2 1 f 2
Energy : E:;Lr{}oi|x(t)| dt Power : P:;LH;E_JJX(M dt

T T T T ef4t T 674t eo
.-,J.|X(t)|2dt:'|.(|e—2t |)2dt:j(€—2r)2dt:J'e—4zdt:|: :| :|: __:|
-T 0 0 0 _4 0 —4 —4_

.T o l_e—4T
..:[T|X(t)|dt—{4 4}

A 1 e 1 ¢ 1 0
Energy,E= Lt ||x(t)|*dt= Lt | —— =————=———=— joules
& HJT' ] ML 4} 4 4 4 4 4’

T —AT —o0
Power,P = Lt J.|x(t)|2dt= Lt 111 e Ll e =O>{l—0}=0
= T2T |4 4 4 4 4

Since energy is constant and power is zero, the given signal is an energy signal.
b) X(¢)=3cos5Qt

T
Energy : E=1lim I |x(t)|2dt
T—o e
R B
Power : P=1lim— I |x(t)| dt
T—x 2T “r

T T T T
[IX@ P dt= [ (Beos5Qy|)’dr = [|(Beos5Qut)* | = [ (Beos5Q1)’ dt
-T -T -T -T

T T T . T
9 10Q2
= J9COSZSQOtdt=9I 1+cos 1001 t:—I(I+COSIOQOt)dt:2 o SIn10€2
o o 2 2 2 10Q ¢
T
i - - l sinlOz—ﬂ-T
:2 T+51nIOQOT_ _T+51nIOQO(—T) :2 2T+2sm1()QOT :2 o T
2 i 10Q, ¢ 109t | 2 109t 2 102l ;
T

N | \©
T

2T+Lsin207z :2 2T+L><O =9T
O 2 Oz |
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Unit-1 : Classification of Signals & Systems

T
Energy,E = TLt I | X(t) ['dt = TLt 9T =
—® r —©

Power, P = Lt —.[|X(t)| a’t— Lt zix9T Lt = 2 —%=4.5watts

T—© 2
Since energy is infinite and power is constant, the given signal is a power signal.

X (1) =cos® (1)
Energy : E=1lim _T[ |x(t)|2dt Power : P= limi T |x(t)|2dt
T—w o T—wo QT o

T

j|X(t)| dt = j(| cos” (Qqt) [ Jdt = _T[(COS2(QOt)2)dt

-T -T

T
=j(%j dr_j ~(1+c082Q,1)° _—j(1+2cos29t+cos 20,1)dt

T
:lj« 14+2c0s 20,1 + 1+Cos4Q t :lj« 2+4 cos2Qt +1+cos4€Q, tdt
4—T 4 -T

T . . +T
1 j (3+4c0s2Q1 +cos 4Q2 t)dt =— 4sm2§20t + SINA€Y,f
87, 2Q), 4Q, |,
_ l 3T —(-3T) + 4sin2Q T B 4sin2Q) (-T) N sin4Q) T B sin4Q) (-T)
8| 2Q), 2Q), 4Q, 4Q3,
_ 1 6T + 8sin2Q) T N 2sin4Q, T _ 6 N sin2Q) T N sindQ) T
8| 2Q), 4Q, 8 2Q), 1603,
3 sin2 x 2—”xT sind x 2—”xT 3 sindr sin8z 3
=—T+ T + =T+ + =—
2 2 4 4r 327 4
2x—— 16x = — =
T T T T

+T
3
= 2 = — =
Energy,E = Tl:)tw j | X(t) |["dt = TI—J};O 4T 0

power, P = Lt—J.|X(t)|dt—LtL><3T—L g=§watt
2T 4 8

T—0 8
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X(n)z(i}nu(n)

d) Here, X (n) = (%j u(n) foralln.

S X(n)= (ij =0.25";n>0

Energy. E= 31| X(F = 3]025)" = 3025

n=—00

1
= 2(0.0625)” =——— =1.067 joules
= 1-0.0625

N 1 N
ower,p = Lt X(n)|*= Lt 0.25)" |
p P N-w QN + 121| ol N—>°02N+1,,Z:(;I( /'l
1 N
= 0.25 = Lt 0.0625)"
o 1Zl( > = +1;< )

1 00625 -1 1 _0.0625" -1 _

TN5e2N+1 00625-1 o 0.0625-1

Here E is finite and P is zero and so X(n) is an energy signal.

e) X(n)=sin (% nj

Power,P = Lt ! ﬁ: | X(n) [} = Lt Z n2 4
’ N>o D 1,=, N>
27
N l—cos?n |
“P= Lt cos—n
N»oozz\urlZ 2 N—>w2N+12[z Z }
= Lt I l[1+1+ ..... +14+1+1+..... +1+1—0]
No>w 2N 412 L VRN )

Lp= l[2N+1]: Lt l:%waz‘ts

Lt
Now QN +12 N—w® D

Since P is finite and E is infinite, x(n) is a power signal.
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System:
It is a physical device which is used to analysis the signal

Continuous Time System

* The system which is used to analyze the continuous time signal

Discrete Time System

* The system which is used to analyze the discrete time signal

Relation between the signal and the system

( )

Input ‘ SYSte m ‘ Output

1\ J

T[x(t)] = y() ; T[x(m)] = y(n)
x(t) = Continuous Time Input Signal

x(n) — DiscreteTime Input Signal
y(t) — Continuous Time Output Signal
yv(n) — Discrete Time Output Signal

T —Transformation of signals

Classification of Systems:

Stable & Unstable Systems
Static & Dynamic Systems
Causal & Non-Causal Systems
Linear & Non-Linear Systems

A

Time Variant & Time Invariant Systems
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Stable & Unstable System
Condition for stability :

) Continuous Time System j |h()| dt <o

—00

iy  Discrete Time System Y |h(n)] <o

n=—0w

Check whether the given system is stable or unstable system

1. h(t)= é ef%ecu(t)

o0 o0 o0 _%ec *
ol o 1 -1 1 e 1 B
£|h(t)|dt_£‘—Rce RCu(t) dt__Rc;[e rC dt—RC[%C] =—-[0+RC]=1
0

The given system is stable
2. h(t)=e"u(t-1)

T |h(0)|dt = ]O e”u(z—l)\dr =T eX|dt = [%I —

—o0 —o0

The given system is unstable
3. y(n)=cos[x(n)]
h(n) =cos[5(n)]
i |h(n)| = i [cos[5(n)]| =......+cos[5(=D)] +cos[5(0) ] +cos[5(1) ]+ cos [5(2)] +

n=—0 n=—0

The given system is unstable

Static & Dynamic System

Static System Dynamic System
Output of the system depends on | Output of the system depends on
the present input only future input only (or)

future input with present input(or)
future input with past input (or)
future with past & present input

Causal and Non causal systems
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Causal System Non-Causal System
Output of the system depends on | Output of the system depends on

the past input (or) future input only (or)
present input (or) future input with past input(or)
past & present input future input with present input (or)

future with past & present input
The causality refers to a system that is realizable in real time. It can be shown that

an LTT system is causal if and only if the impulse response is zero for n<0,

Check whether the given system is causal or non-causal systems and static or dynamic

systems
1. Y =x(n)—x(n—-2)
n=0: y(0)=x(0)—x(-2)
n=1:y(1) = x(1)— x(~1)
n=2:y(2) =x(2)—x(0)

The output of the system depends upon the present input and the past input;
So, the system is Causal Systems, Dynamic Systems

n

2. y()= Y x(K)
n=-1:y(0)= i x(K) =x(—0)+....+x(-1)
n=0:y0)= 20: x(K) =x(—0)+....+x(0)

n=1:y)= > x(K) =x(-o0)+....+x(0)+x(1)

K=—0

The output of the system depends upon the present input and the past input;
So, the system is Causal Systems, Dynamic System.
3. y(n)=x(3n)
n=-—1:y(-1)=x(-3)
n=0:y(0)=x(0)
n=1:y1)=x3) n=2:y(2) =x(6)

The output of the system depends upon the past, present and future input;
So, the system is Non-Causal Systems, Dynamic System.

4. y(n)=x(-n)
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n=-2:y(-2)=x(2)

n=—1:y(-1)=x(1)

n=0:y(0)=x(0)

n=1:y1)=x(-1)

The output of the system depends upon the past, present and future input;
So, the system is Non-Causal Systems, Dynamic System.

Linear and Non Linear systems

Linear System Non-Linear System
Satisfies the superposition Not satisfies the superposition
Principle Principle

Superposition Principle:
The weighted sum of input is equal to the weighted sum of output
Tlax,(t) +bx,(t)] = ay,(t) + by, ()
Tlax,(n)+bx,(n)] = ay,(n) +by,(n)

Check whether the given system is linear or non-linear system.
1. y(n)=nx(n)
Superposition Principle is T[ax,(n) + bx,(n)] = ay,(n) + by, (n)
ay,(n) = anx,(n) ; by,(n) = bnx,(n)
ay,(n)+by,(n) = anx,(n) + bnx,(n)
= n[ax,(n) + bx,(n)]
TTx(n)] = y(n) = nx(n)
Tlax,(n)+bx,(n)] = n[ax,(n) + bx,(n)]

The given system satisfies the superposition principle, so the system is Linear system

2. y(n)=logx(n)

Superposition Principle is T[ax,(n) +bx,(n)] = ay,(n) + by, (n)
ay,(n) =alog x,(n) ; by,(n) =blog x, (n)
ay,(n)+by,(n) =alogx,(n)+blogx,(n)
Tlx(m)] = y(n) = log x(n)
Tlax,(n)+bx,(n)] =loglax, (n) + bx,(n)]
=log[ax,(n)]log[bx,(n)]

The given system not satisfies the superposition principle, so the system is Non- Linear

system
3. y(n)=x(n)—-2x(n—-1)

Unit-1 : Classification of Signals & Systems Page 21



Superposition Principle is T[ax,(n) +bx,(n)] = ay,(n) + by, (n)
ay,(n) = ax,(n) — 2ax,(n—1); by, (n) = bx,(n) — 2bx,(n—1)
ay,(n)+by,(n) = ax,(n) — 2ax,(n—1) + bx,(n) — 2bx,(n—1)
= ax,(n)+bx,(n)— 2[axl(n -D+bx,(n— l)]

TTx(n)] = y(n) = x(n) = 2x(n—1)
Tlax,(n) +bx,(n)] = ax,(n) + bx,(n) —2[ ax,(n—1) + bx,(n—1)]

The given system satisfies the superposition principle, so the system is Linear system

4. y(t)=cosx(t)
Superposition Principle is T[ax, (t) +bx, (t)] = ay,(t) + by, ()
ay,(t) =acosx,(t) ; by,(t) =bcos x,(t)
ay,(t)+by,(t) =acosx,(t)+bcos x, (1)
Tx()]= y(t) = cos x(¢)
Tlax,(t)+bx,(t)] = cos[ax,(t) + bx, (1)]

The given system not satisfies the superposition principle, so the system is Non- Linear

system

Time Variant and Time In-variant systems

Time Variant System Time Invariant System
» yt-T)=T[x(t-T)] » yt-T)=T[x(t-T)]
» y(n—N)=T[x(n—N)] » y(n—N)=T[x(n—N)]

Check whether the given system is time variant or time invariant system

1. y(t)=cosx(t)
y(t) =cos x(t)
Putt=t-T
y(t—T)=cosx(t—T)
TIx(D)] = y(r) = cos x(1)
Append (—T) inside the bracket
Tlx(t—T)]=y(t—-T)=cosx(t—T)
ye=T)=T[x(z-T7)]

The given system is Time Invariant System.
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x(n)

2. y(n)=ne
y(n) = ne*™”

Put n=n—-N

y(n=N)=(n=N)e" "™

Tlx(n)] = y(n) = ne™™

Append (—N) inside the bracket

T[x(n—N)]=y(n—N)=ne""™"

y(n=N)#T[x(n-N)]

The given system is Time Variant System.
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UNIT-2
Analysis of Continuous Time Signals

Syllabus:
Fourier Transform for Periodic Signals, Fourier Transform, -Properties, Laplace
Transforms & Properties.

Session Sess1f)n Topic
Learning
1 1 Laplace Transform & types
2 Region of convergence
2 1 Laplace Transform of Basic elementary signals
2 Laplace Transform of transformed signals
3 1 Laplace Transform of transformed signals
2 Properties of Laplace Transform
4 1 Properties of Laplace Transform
2 Properties of Laplace Transform
5 1 Laplace Transform of signals using properties
2 Laplace Transform of signals using properties
6 1 Fourier Transform & Its Properties
2 Properties of Fourier Transform
7 1 Properties and Fourier Transform of Signals
2 Fourier Transform of signals
8 1 Fourier Transform of signals
2 Magnitude & Phase Spectrum
9 1 Inverse Laplace Transform
2 Inverse Laplace Transform
10 1 Fourier Series & Its Types
2 Exponential Fourier Series
1 1 Exponential Fourier Series
2 Trigonometric Fourier Series
12 1 Trigonometric Fourier Series
2 Trigonometric Fourier Series




Laplace Transform:

It is mathematical tool which is used to analysis the continuous time signal and the system

+00

X()=L{x(t)} = j x(t)e™"'dt Bi-Lateral Laplace Transform (Two Sided)

—00

+00

X(s)= L{X(Z)} = I x(t)e"dt Unilateral Laplace Transform (One Sided)
0
0

X(s)= L{x(t)} = J‘ x(t)e "dt Unilateral Laplace Transform (One Sided)

—00

Region of Convergence:

It is condition in which the Laplace Transform exist for the signal.
The range of ¢ value for which Laplace Transform X(s) converges.

+00

X ()= L{x(t)} = [ x(t)e™"dt Put s=0+ jQ

X (5)= j x(t)e Y gy

+00

X(s)= I x(t)e e ' dt If jQ=0

—00

+00

X (s)= j x(t)e ' dt

—0

X(s)= I | x(t)e ™ |dt <o Condition forthe existance of Laplace Transform

Properties and Theorems of Laplace Transform
1. Amplitude Scaling

In amplitude scaling, if the amplitude (or magnitude) of a time domain signal is multiplied
by a constant A, then its Laplace transform is also multiplied by the same constant.

ie. ifL{x(r)}=X(s),then
L{Ax(1)} = AX (s)
Proof:

By definition of Laplace transform, X (s)= L{x(t)} = J. x(t)e™dt

—o0

L{Ax(t)} = j:OAx(t)e_”dt =A j:o x(t)e "dt = AX (s)



2. Linearity

The linearity property states that, Laplace transform of weighted sum of the two or
more signals is equal to similar weighted sum of Laplace transform of the individual signals.

If L{x,(0)} = X, (s)andL{x,()} = X, (s),then L{ax,(t)+a,x, ()} =a,X,(s)+a,X,(s)
Proof:

By definition of Laplace transform,

+00 +o0

X, ()= L{x (1)} = le (Ne™dt  X,(s)=L{x, (1)} = j x,(t)e " dt

—00 —00

L{alx] (t)+a,x, (t)} = jio[alxl () +a,x,(t) ]e’“dt

=q, J- x,(t)e "dt +a, I x, (t)e " dt

=a,X,(s)+a,X,(s)
3. Time Differentiation

The time differentiation property states that if a causal signal X(t) is piecewise

continuous, and Laplace transform of x(t) is X(s) then, Laplace transform of diX(t) 1s given
t

by sX(s)-x(0). If L{x(t)} = X (5),then L{% x(t) =sX(s)— x(O)} ; Where (0) is value of x ()

at t=0.
Proof:

By definition of Laplace transform, the Laplace transform of a causal signal is given

+00

X ()= L{x(0)} = [ x()e™"dt

+00

)4 _rdx@) o f g dx(D)
..L{dtx(t)}—v([ & e dt—!).e % dt

+o0

= [e_s’ x(t)]ooo - I x(t)(—se™*")dt

0

= [e_‘” x(c0) —e’x(0) + ST x(t)(e ")dt
0

o0

=5 j x(t)(e™*)dt — x(0) = sX (s) — x(0)

0



4. Time integration

The time integration property states that, if a causal signal x(t)is continuous and Laplace

X, [Jx0d ],

S

transform of x(t) is X(s),then the Laplace transform of jx(t) is given by,

X, [Jx0d ],

N S

ie If L{x(t)} = X (s),then L{I x(t)} =

Proof:

By definition of Laplace transform, the Laplace transform of a causal signal is given

X (s)=L{x(t)} = Tx(t)e‘”dt

{ x(t)dt } T[ x(t)dt e dt

0

X ( e’ xX x(t)dt
H j (t)dt} j (t)d
0o S

L{ x(r)dz} U x(t)dr]| ,w_—: U x(t)dt]

Ao

_ X () N U.X(t)dtJ o

S s

5. Frequency Shifting

0 0
£ 4 ljx(z)e-“dz
—S ) 0

—+

=0

1
A

T x(t)e™"dt
0

The frequency shifting property of Laplace transform says that,
If, L{x(t)} = X (s), then L{e*x()} = X (s ma)

[i.e. L{e’”x(t)} =X(s—a)and£ {e_‘”x(t)} =x(s+ a)]
Proof:

By definition of Laplace transform,
X(s)=L{x(0)} = [ x(0)e™" dt
L L{ex(n) = j e x(te ™ dt

—0



= J.x(t)e’(m”’)dt = X(sma)

6. Time Shifting
The time shifting property of Laplace transform says that,
If, L{x(t)} = X(s), then L{x(ti)a} =ex X ()

ie. L{x(t+a)} =e" X (s)andL{x(t—a)} =e "X (s)
Proof:

By definition of Laplace transform,

+00

X(s)=L{x()} = [ x(t)e™ dt

—00

+00 +00

L{x(t + a)} = .[ x(tta)e 'dt = J. x(0)e*™dr

—00 —00

+o0 o
= I x(r)e " xe “dr=e"” .[ x(0)e™™ dt
—0

—0
+00

=™ J. x(0)e™™ dt = e x(s)
7. Frequency Differentiation
The frequency differentiation property of Laplace transform says that
If L{x(0)} = X (s). then L{tx(t)} = —di X(s)
s
Proof:

By definition of Laplace transform,

+o0

X(s)=L{tx(0)} = [ x(te™ di

—00

On differentiating the above equation with respect to s we get

d d(’f st
EX(S)—Z(Ix(t)e dt]

= j x(t)(—e jdt = Tx(t)(—te”) dt

= j (~tx(1))e™"dt = L{~1x(t)} = —L{tx(1)}

= L{tx(t)} = —% X(s)

L{1 x(t)} = T X (s)ds
t s



8. Frequency Integration
The frequency integration property of Laplace transform says that,

If L{x(1)} = X (s), then L{% x(t)} = T X (s)ds

Proof:

By definition of Laplace transform,

X(s)= L{x(t)} = Tx(t)e_” dt

—00

On integrating the above equation with respect to s we get,

Tx(s) ds = T[Tx(t)e‘” dt}ds

= jfx(t) |:Te” ds:|dl‘ = Tx(t) |:%j|io dt = Tx(t)|:§_ e_—: j|dt

_ Tx(t) {0 L }h _ f [1 x(t)} et = L{l x(t)}
—t t t

—00

L{1 x(t)} = T X (s)ds
t s

9. Time Scaling

The time scaling property of Laplace transform says that,
1

If, L{x(t)} = X (s), then  L{x(at)} = H X (ij
a a

Proof:

By definition of Laplace transform,

X(s)=L{x(n)}= Tx(t)e“ dt

—00

L{x(at)} = T x(at)e ™ dt = TX(T)eS(;) ﬁ
S i a
- l+.|2096(T)e_(2}clr :lx(ij
a“, a \a

The above transform is applicable for positive values of “a” happens to be negative it can be

1 s
proved that, L{x(at)} T4 X (;)



1 s
L{x(at)} B H X ( J for both positive and negative values of “a”

Hence in general,
10. Periodicity
The periodicity property of Laplace transform says that,
If x{(t)} = x(t+nT),and x,(t) be one period of x(t),
1 T
_ —st
L{x(t+nT)} = — jx, (t)e ™" dt

0

Proof:

By definition of Laplace transform, L{x(t + nT)} = Ix(t +nT)e "dt
0

T 27 3T (p+))T
=[x e dt+ [ x @t =T)e D+ [ x,(t=21)e "t 4K .......... + [ x@-pDe " Mdr+ ...
0 T 2T pT
w (p+)T
L {x(t + nT)} = z J. x(t— pT)eiS(H"T)dt
p=0  pT
o T T o
= 2 J.xl (e e P dt = J.xl (t)e™ [Z e’ jdt
P=0 0 0 p=0
T © T 1
= J' x,(H)e™ [Ze J dt = le (t)e™ ( — jdt
0 p=0 0 l-e

(=g
= — || x, (e "dt
1—e™" -([ !

11. Initial value Theorem

The initial value theorem states that, if x(t) and its derivative are Laplace transformable
then, Lt x(t) = Lt sX ()

Proof:
x(t
We know that, L{ d( )} sX (5)—x(0)
t
On taking limit § — 00 on both sides of the above equation we get,

Lt L{d);(;)} = Lt [sX (s)—x(0)]

§—>00

Lt j dx(’) “dr = Lt [sX ()= x(0)]

I%(Ha “’)dt —( Lt sX(s))—x(O)



0= Lt sX(s)—x(0) ..x=(0) Lt sX(s)

Lot x(t)= Lt sX(s)
—> §—>00

12. Final value Theorem:

The final value theorem states that, if x (t) and its derivative is Laplace transformable
then, Lt x(t) = Lz‘0 sX ()
—0 Ned

Proof:

We know that, L { d);(t)
t

} =sX(s)—x(0)

On taking limit s — 0 on both sides of the above equation we get,

Lt L{d);(tt)} = Lto[sX(s) —x(0)]

s—0

Lt wwe““dt = Lto[sX(s) - x(O)]

s—0 0 dt

T dx(t) ( Lie™ )dt — (Alito sX (s)) —x(0)

d[ s—0
[ B 1~ Lr e Lt sX (5) = x(0)
0 dt s—0 s—0

[x(®)]; = Lt sX(5)-x(0)
x(0) —x(0) = LtO sX (s)—x(0)
cox(00) = Lt0 sX (s)

Lt x(t) = Lto sX ()



13. Convolution Theorem:

The convolution theorem of Laplace transform says that, Laplace transform of
convolution of two signals is given by the product of the Laplace transform of the
individual signals. If L{x1 (t)} =X,(s) and L{x2 (t)} = X, (s) then,

~+00
L{x (0%, (0} = X,(8) X,(5) x,(0)*x5,(0) = [ x,(A)x,(t - A)d A
Where, A is Dummy variable used for integration.

Proof:
Let x,andx, be two time domain signals.

By definition of Laplace transform,
X,(5)=L{x®} = [ x()e” X,(5)=L{x,0)} = [ x,()e™ dt
Now by definition of Laplace transform,

L{x0O*x,0} = [ [xO)*x,0)) "

—00

t=too | A=+o0
t=—00| A=—w0
- :I :I X, (A)x,(t—A)dA e e e e dt
e
- .[ J. X (]‘)xz (t _l)e_”' e_S(t_l)didt
t=—00 A=—0
M =40 A=+w
- .[ J. X (/1))62 (M)e_M e MdldM
M =—0 A=—0

= Txl (t)e™"dt x I x,(t)e " dt

—00

= X1 (S)Xz (S)
A L{x @050} = X, (5) X,(s)



Table: Properties of Laplace Transform

Property Time Domain Signal s-domain signal
Amplitude scaling AX (1) AX (s)
Linearity a,x, (1) £ a,x, (1) a, X, (s)ta,X,(s)
Time differentiation i (1) sXs(s)—x(0)
dt
m k 1
j—mx(l) s X(s)z mk d x(t)

Where m=1,2,3......

t=0

Time integration
g [ x(yar X | [ [xwar ],
S s
[ x@ny” X (s) £33 L xown k‘
Where m=1, 2, 3...... =
Frequency shifting X (1) X (sma)
Time shifting x(tta) e X(s)
Frequency differentiation tx(t) dX (s)
ds
1" x(t)

Where m=1, 2, 3......

w dm
()"~ 5 X ()

Frequency integration 1 2
a Y 8 - x(1) I X (s)ds
t s
Time scaling x(at) 1 ( s j
—_— X J—
o] \a
Periodicity x(t+mT) 1 X .
Where m=1,2, 3...... = Jxweai

T=Period

0
Where, x,(f) is one period of x(t)

Initial value theorem

rﬁz; x(t) = x(0)

Lt sX(s)

§—>00

Final value theorem Lt x(t) = x(0) Lt sX (s)
t—>o0 s—0
Convolution theorem o X,(5)X,(s)

[ x(x, = 2)d2

—00




Determine the Laplace transform for the following signals

1. x(t)=0()
X(s)= T x(H)e dt = ]g S(t)e™dt 5(1) = {1 ;1=0
s - 0;¢#0
=35(0)e*” =1
2. x(t)=u(t)
X(s)= T x(t)e "dt = T u(t)e™'dt u(t) = {l;t >0
- - 0;¢<0

© —st |*
N e
= Ie 'dt 2{

0 S_O

—s(0) -5(0) 7| 1
- {e S {0 - _} _1
) —S s )

3. x(t)=r(t) )

—st T —st ° —st t;tZO
X(s):J-x(t)e‘dt:J-r(t)e‘dtzjte dt =1
—o —»o 0 )
={—t6 _e;} u=t ;v=e "
s s
= (O—O)_(O—lj u :1’ v:e_\l
s’ s
1 e*St
:s_2 u =0;v= =

4. x(t)=cosw,tu(t)

© © ejﬁ),,f +e_.fwr;t
X(s)= I x()e'dt = J. cos @, tu(t)e " dt cosm,t = —
© o ot —ja,t
s e’ e
='[cos o te”"dt =J.(—]e 'dt
0 0 2
1% 1%

_ _J'I:ejw”tefst +e_jWI1167SI:|dt _ 1 ':e—(s—ja)(,)t +e—(s+ja)(,)tj|dt
2 0 2 0



—(s—jw,)t ~(s+jw)t "
=1{ S S (0+0)—[ S ]
2| -(s—-jo,) —(s+jo,)|, 2 —(s—jo,) —(s+jw,)

1 1 1 1{ s+ jo,+5— jo, 1 2s K
= — - + X = P ) == 2 2 = 2 2
2 (s—jo,) (s+ jow,) 2 (s"+w)) 2{(s"+w,7) (s"+w))

x(2) = e sinbtu(t)

X(s)= j x(t)e "dt = j ¢“ sin btu(t)e " dt

usin g frequency shifting property Lle”x(t)]=X (s —a)

L[sinbt] = %
(s +b°)
Lle" sinbt] = ————
((s - a) +b%)
S.No. Signal Laplace Transform
1. o(t) 1
2. u(t) 1
s
3. e u(r) 1
s+a
4, e“u(t) 1
s—a
5. r(t) 1
S2
6. e r(t) 1
(s+a)’
7. e“r(t) 1
(s—a)’
g cosat s
s’+a’
9. sin at a
s’+a’
10. e cosat s+b
(s+b) +a’
11. e” cosat _ s=b
(s—b)* +a’
12. e " sinat a
(s+b) +a’




13. e” sinat a

(s—b)* +a’
Inverse Laplace Transform Types

Type-1 ! 4, B

(s+D(s+2) (s+D) (s+2)
Type-2 ! A, 8 , €

(s+D(s+2)° (s+1D) (s+2) (s+2)
Type-3 1 A N Bs+c

(s+1)(s*+2) (s+D) (s*+2)

Determine the Inverse Laplace Transform
X(s)= ;
(s+2)(s+3)
A N B A(s+3)+B(s+2)
(s+2) (s+3) (s+2)(s+3)
Put s=-2=1=A(-2+3)+B(-2+2)= A=1
Put s=-3=1=A(-3+3)+B(-3+2)= B=-1
1 -1
= +
(s+2) (s+3)

Taking Inverse Laplace Transform on both sides

x(t)=eu(t)—eu(t)

=1=A(s+3)+B(s+2)

X(s)

S
T (5+2)(s5+3)°
__ A, B C :A(s+3)2+B(s+2)(s+3)+C(s+2)
(s+2) (s+3) (s+3)° (s+2)(s+3)°

=s5=A(s+3)* +B(s+2)(s+3)+C(s+2)

Put s=-2=—-2=A(-2+3)"+B(-2+2)(2+3)+ C(2+2) = A=-2

Put s =-3=>-3=A(-3+3)" + B(-3+2)(-3+3)+C(-3+2)= C=3

Put s=0=0=A(0+3)>+B(0+2)(0+3)+C(0+2)=9A+6B+2C =0
=9(-2)+6(B)+2(3) =0
=-18+6B+6=0

X(s)




=6B=12=B=2
—2 2 3
= + + -
(s+2) (s+3) (s+3)

Taking Inverse Laplace Transform on both sides

x(t) =2 u(t)+2eut) +3te " u(t)

X(s)

Fourier Transform
Let x(t) = Continuous time signal

X (jQ) = Fourier Transform of x(t)

ol

Flx()]=X(jQ) = f x(t)e ' dt

—00

Conditions for Existence of Fourier Transform

The Fourier transform of x(t) exists if it satisfies the following Dirichlet’s condition.
“+o0

1. The x (t) should be absolutely integrable. i.e., j x()e Mdr < ©

—o0
2. The x(t) should have a finite number of maxima and minima within any finite interval.
3. The x(t) can have a finite number of discontinuities within any interval.

Definition of Fourier Transform

The inverse Fourier transform of X(j€) is defined as,
x()=F ' {X(jQ)} = 1 j X (jQ)e™™dQ
2 2,

The signals x(t) and X(j€) are called Fourier transform pair can be expressed as shown below:

(O X ()

Frequency Spectrum Using Fourier Transform
The X (jQ) isa complex function of Q.Hence it can be expressed as a sum of real part and

imaginary part as shown as below:
LX) = X, GO+ X, ()
Where, X, (j€)=Real part of X (jQ); X,(jQ)=Imaginary part of X (jC)

The magnitude of X (jQ2) is called Magnitude spectrum, |X (jQ)|= X2(jQ)+ X2 (jQ)

X.(jQ
The phase Spectrum of X(jQ) is called Phase spectrum. ZX (jQ) = tan™" [’(—])j
X (€Y
The magnitude spectrum will always have symmetry band phase spectrum will have odd
symmetry. The magnitude and phase spectrum together called frequency spectrum.



Comparison of Fourier series and Fourier transform

Fourier Series

Fourier Transform

1.Defined only for periodic signals
2.The spectrum is discrete

3.Magnitude spectrum and phase spectrum are
plotted by taking “magnitude/phase” of a signal

versus harmonic order “n”

4. Parseval’s relation of Fourier series is used to
calculate power spectral density of a periodic signal

x(t).

1. Defined for both periodic and aperiodic signals
2.The spectrum is continuous

3.Magnitude spectrum and phase spectrum are
plotted by taking “magnitude/phase” of a signal
versus frequency “Q”

4. Parseval’s relation of Fourier transform is used
to calculate energy spectral density of the signal

x(t).

Properties of Fourier Transform

1. Linearity

The linearity property of Fourier transform says that,
Flax,(t)+bx,(t)] = aX,(j€2)+bX,(jO)

Proof:

By definition of Fourier transform,

400

+00

X, = [ w0 ™dr X,(jQ) = [ x,(e ™ ds

—00

—o0

F[axl )+ be ®]= f[alxl (1) +a,x, (t)]eijtdt

- J (ax, (e +a,x, (t)e "™ )dt

—o0
+o0

]

—00

ax,(t)e " dt + J. a,x, (t)e ' dt

—o0




aX,(jQ)+bX,(jO)

2. Time shifting

Time shifting property of Fourier transform says that,
F[x(1)]= X (jQ) then F[x(t—t,)]=e " X(jQ)
Proof:

Flx(t=t,)]= [ x(t—t,)e ™ dt t—t,=T=>t=7+1, dt=dr

+00 +00
— I X, (T)e*JQ(Hm)dT — j X, (z.)e*JQreijzodT

+o0
= /M I x, (r)e "dr =e " X (jQ)

3. Time Scaling
The time scaling property of Fourier transform says that,
Flx(®)]= X (jQ) then F[x(at)]= ﬁ X [E)
a a

Proof:
400 ]
By definition of Foutier transform, F[x(f)]= I x(t)e ™ dt

—0
~+00

F[x(at)]= I x(at)e ™ dt at=1t =t 22 adt =dr = dt = %

—00

1 I x(r)efjggdr = LX (Ej
a:, la] \ a

4. Time Reversal
The time reversal property of Fourier transform says that,
Fx(D)]= X (jQ) then F[x(=1)]= X (- j€2)
Proof:

~+00
By definition of Foutrier transform, F[x(f)]= J- x(t)e ™ dt

—00



Fx(—1)] = j x(—t)e " dt t=r=t=—T —di=dr

—00

= I x(r)e™dr

= I x(0)e” TV dr = X (—jQ)

5. Conjugation
The conjugation property of Fourier transform says that,
Flx(0)]= X (jQ) then F{x ()} =X (-j)
Proof:

By definition of Fourier transform, F{x(t) =X (jQ) = j x(t)e " dt

F[x ()] = Jiox*(t)e_jgldt

—00

= {Tx(t)ejg'dt}

—00

= {T x(t)ej(g)ldt:|

—00

=X'(-jQ)

6. Frequency Shifting
The frequency shifting property of Fourier transform says that,
Flx(t)]= X (jQ) then F{e’™x(t)=X(j(Q-Q,)
Proof:

By definition of Fourier transform,

F{x(H))}=X(jQ) = Tx(z)e‘fﬂfdz

—00

F{e™™ x(1))

+00
= I e x(t)e ™ dt

+00
= I x(t)e’™ e " dt



+o0
= I x(t)e 70 gy

—00

= X(jQ-Q)

7. Time Differentiation

The differentiation property of Fourier transform says that,
Flx(®)]=X(jQ) then F {di x(t)} = jQX (jQ)
1

Proof:

By definition of inverse Fourier transform,
1 +00 ‘ o
x(t) — j X (jQ)e’™d0
27 =,

On differentiating the above equation we get,
a0 _di 1.
dt d 2r

j X (jQ)e’dQ

= Lf X (jQ) 4 porger if X (jQ)jQe’™dQ
2 i dt 27 e

== [ X (a0 = F{joxj)

On taking Fourier transform of the above equation we get,

F {dx(’)} - JOX ()
dt

8. Time Integration

The integration property of Fourier transform says that,

Flx(t)] = X (jQ) and X(0) = 0 then F { [ x(z‘)dz‘} _ %X( jQ)
J

—00

Proof:

Consider a continuous time signal x(t).Let X(j€)be Fourier transform of x(t).since
integration and differentiation are inverse operations “t” can be expressed as shown below:

d
Z[x(r)dr] = x(1)

On taking Fourier transform of the above equation we get,



F {%“;x(r)dr}} = F{x(1)}

t

jm{ | x(r)dr} = F {x(1)}

F{:[Ox(r)dr} :j%X(jQ)

9. Frequency Differentiation

The frequency differentiation property of Fourier transform says that,
FLx()]= X () then F{ix(t) = j 1 X (/)
Proof:
By definition of Fourier transform,

d . _i i —jQu _+00 i —jQut
EX(JQ)_dQUx(t)e er_j x(t)(dQe jdt

—00 —00

+o ' 1 '
— TP (¢ d - —]Qtd
_J; x(t)( jte ) t jtx(t)e t

1
=—Fi{tx()

d
SF{ix(n)} = jEX( jQ)

10. Convolution theorem
Convolution theorem of Fourier transform says that, Fourier transform of convolution
for two signals is given by the product of the Fourier transform of the individual signals.

Flx(t)]= X (jQ) then, F[x,(1)*x,(0)] =X, (s5) X, (s)

The equation is also known as convolution property of Fourier transform.
By definition of convolution of continuous time signals,

x,(1)*x,(t) = T_jw x,(0)x,(t—7)d7

T=—00

Proof:

Using definition Fourier transform we can write,

t=+0

F{x®*x}= [ [x@®)*x0)]e ™ dt

t=—00

= | { | xl(t)xz(t—r)dr}-m’dt t—t=u=>di=du

T=—00 |_T=—0



f—r [TTO x,(7)x, (u)dr}_jg(””)dt

f=—00 | 7=—00

=40 u=+00
— -jQr —jQu
= j x,(v)e " dr j x,(w)ye "dr

T=—00 U=—00

X, (JE)X,(j€)

Determine the Fourier Transform for the given signal and draw its phase and magnitude spectrum.

x(t)=e“u()

Flx(®)]= fx(t)e_jg’dt

= J.e’”’u(t)e’jgtdt = je’“’e’jgtdt
—0 0
:Te("”m’dt ={ (@i }
0 —(a+jQ) |,
e—(a+jQ)oo e—(a+jQ)0 1
| =@+ Q) —(a+ | (a+jQ)
1 @) _ (@ jO)
(a+jQ) (a—jQ) (a*+Q7)

Q-
(@ +07)

a

XR(.]Q) :m

X/(jQ):

X ()| = X2+ X2 (jO)

~ a Y (o Y _[ @+ )_ 1
Nl @+ @+ ) W@+ ) @+

/X (jQ) =tan™ {m} =tan"' {ﬁ} =—tan”' {9}
X, (JY a a

For a=2
Q -5 -4 -3 -2 -1 0 1 2 3 4 5
|X(jQ)| 0.185| 0.22 [ 0.277 1 0.35| 0.44 | 05| 0.44 | 0.35]0.277 | 0.22 | 0.185

ZX(jQ) | 68.19 | 63.43 | 56.30 | 45 | 26.56 | 0 | 26.56 | 45 | 56.30 | 63.43 | 68.19




1.

Determine the inverse Fourier Transform

1;|QKKw

X(]Q):{ 0 ; Else

1 7 »
x(t)=— | x(0)e?™dQ
(1) 27[_[0 0)
w jor @
=ij1.ef“’dg e
27 2| gt |,

3 i ej(ut _e—ja)l
mt 2j

1 . W . w .
=—sin @t = ——sin @t = —sin cwt
Tt ot 4

X(jQ) =1

(JO) +7(j)+12

__3+14 A B
(JQ+3)(jQ+4) (Q+3) (JQ+4)
_AGQ+ D+ B(jQ+3)

O (JQ+3(Q+4)

=3(jQ)+14=A(jQ+4)+ B(jQ+3)
Put jQO=-3=3(-3)+14=A(-3+4)+B(-3+3)=>5=A
Put jQ=-4=3(-4)+14=A(-4+4)+B(-4+3)=>2=-B

5 -2
(jQ+3) * (jQ+4) [By taking Inverse Fourier Transform)|

X(j€) =



x(t) =5¢ 7 ut) —2e "u(r)

Fourier Series

It is a mathematical tool which is used to analyze the periodic signals.
There are two types

1) Exponential Fourier Series

1i) Trigonometric Fourier Series

Exponential Fourier Series
x(t) = Z Cnean,,t
n—oo

T
Where C, = lJ‘x(t)dt
T 0
1 T
_ —jnQ,t
C, = T .[x(t)e dt

0
Trigonometric Fourier Series

a = © .
x(t) = ?” + Z a,cosnd t+ an sinnQ t
n=l1 n=1

2 T
Where a,=— '[ x(t)dt
T 0
2 T
a,=— I x(t)cos n€ tdt
T 0
T

2 .
b, = P I x(t) sin nQ tdt

0



1. Compute the exponential Fourier series for the following signal

A X(0)

-4 -3 2 -1 0 1 2 3
T=4 Q=27/T=2nl4=r/2

T 14 1 1 2 4
Co =1+ [x(t)dt = [ x(r)dt :—D‘2dt+jdt+jo.dt}
0 40 4 0 1 2

=i“2dt+jdt} :i[2+1]
0 1

C,=

1 T - jnQyT
C = T I x(t)e dt

0

4

1 _jmt S A
_—jx(r)e 73 dr:l[jze 3 dr+je 7 dt + 0]
4 0 1

- jo 1 _jm 2
{2{6 ],} + {e ]"’l } 2 |:2(e—jn7r/2 _1)+(e—jn7z _ gt )]
1




=ﬁ |:(26—jmr/2 _2)+(e—jmz' i )]=é

i ]

2. Determine the exponential Fourier Series

A X(@)
1
-, o0 1 T,
T=T, Qozz—ﬂ
T,
x 1 7 1 2T
CO_Tlx(z)dt Tojdr TO[T1+T1] T
T
—j27nt
1 T 1 T —j2rxnt 1 T,
C =— | x®)e™dt=— | x(t)e ™ dt =— | e—
! T()J;] () T _J;i () T() —]27Z'I’ll‘

TE) —J2znTyy, J2znTyg, 1 J2znTyg, —Jj2mnTyy,
= e —e = - —e
j2zn

1,j27n

Jj27znT, _J'27T’1T|/T
L e UTy _e 0 ] . 27[”]’;
= 3 =47 s T
J 0




Trigonometric Fourier series

1. Determine the Trigonometric Fourier Series

x®
1
-3 -1l 0 |1 3 ;
_2_7[ _ _2_72'_2 1) = 1 1]
2, = T r=4 Q= 1 x(7) {—1 1<t<3

x(t) = “—20 +3 [, cosnQyr +b, sinnQy]

n=1

x(t)=a, + g{an coS (%mj +b, sin(%mﬂ
a :ij3x(t)dt_l .I[dt+.|.3—1dt Zl[(1+1)_1(3_1)]
0 T 1 _4 N 1 4

aozi(z—z):o

a,== '[13 x(t) cos (%ﬁj dt



=2 [ x(t)sin| L
@—Tjﬁﬁﬁm(ZZ}h
=l Jl sin n—m]dt+J‘3sin n—det
2|71 2 1 2
3
2 nrw nr nrwt
=——| —cos| — |+ cos| — | +| —cos| —
ZHﬂ{ ( 2) (2:) ( ( 2 jl ]
1 { (3117[) (nﬂj}
=—1/| 0—-cos| — |+ cos| — | |=0
nr 2 2

d nit = 4 . (nrw nit
x(1)=) a, cos [7j —Z— sin (7j cos (7)

n=1 n=1 N7T

2. Determine the Trigonometric Fourier Series
AX(7)

0 f/////ﬁ 3

X(t) — {6 —1<e<1

else




x(t) = a_20 + i [a, cos(nQt ) +b, sin (n€t ) |
n=l

1! (7 1 |
a, :%J. x(0)dt =5J.ldl‘=5(5]l=_(l_l)=0

b 4
u=t
1 ,
a, :%J._ltcos(nm)dt u=1
u=0
of ¢ l
=—| —sinnxzt+cos 4% | a, =0
n7z. nr
u=t
2 ! 3
b, =7J‘71tsm(nm)dt Lo
u =0

1
t .
= [— —cosnrt+sin 22 }
ni

nr o

cosnm sinnrx [cos nx  sin nnj

niw 1’1272'2 nrw 1’127[2

-2 -2 =20 (-1)
b, =— =2 (=) === L
nrw cosnr nrw [( ) } T n

x(t) = i_—z % sin nit

n=l1 T

Vv = cos nrt
. hnt
v, =sin—
nr

— nxt
Vv, =—CO0S ey

v =sin nzxt
nrt
v, =—C0S ——
nr
— Q1 nrt
v, =—sin-%%
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UNIT-3
Analysis of Continuous Time Signals

Syllabus:
Impulse Response-Convolution Integrals, Differential Equation, Fourier & Laplace
Transform in Analysis of Continuous Time Systems; System Connected in Series &
Parallel Combinations

Session SeSSI?n Topic
Learning

1 1 Continuous Time Systems & its Representation
2 LTI Systems and Transfer function

2 1 Differential Equation
2 Analysis of LTI Systems

3 1 Analysis of Response
2 Analysis of Step Response

4 1 Analysis of Impulse Response
2 Convolutional Integral

5 1 Properties of Convolutional Integral
2 Convolutional Integral using formula

6 1 Convolutional Integral using Graph
2 Convolutional Integral using Graph

7 1 Systems Connected in Series
2 Systems Connected in Parallel

8 1 Basic Elements of Block Diagram Representation
2 Types of Block Diagram Representation

9 1 Direct form-I Representation & Realization
2 Direct form-II Representation & realization

10 1 Cascade representation
2 Realization using Cascade Representation

11 1 Paralle]l Representation
2 Realization using Parallel representation

12 1 Frequency Response Analysis
2 Stability Analysis
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Continuous Time Signal:
It is a signal in which the amplitude can be measured at any time instant. It is denoted by x(t).

Continuous Time System:

The system which is used to analysis the continuous time signal. It is denoted by the differential

equation.

%(t) :::>[ SYSTEM ]:::> y(t)

y(t) =T [x(t)]
Transfer Function:

It is defined as the ratio of Laplace transformation of output signal to the Laplace transformation of
LIy®]_Y(s)
L[x®)] X(s)

input signal. It is denoted by H(s). H(s) =

Response:
It is defined as the output of the system, it is denoted by y(2). It is classified into two types, they are of
1) Step Response :: When the input is unit step signal, then the output is

called as Step response.
H(s) =)
X(s)
Y(s)=H(s)X(s)
LY (8)] =L [H(s)X(s)] X (s) = %
i) Impulse Response :: When the input is unit impulse signal, then the output is called
as Impulse response.

Y(s
H(s)= %
Y(s) =H(s)X(s)
Lt [Y(S)]: L’l[H(S)X(S)] X(s)=1
LY ()] =L*[H(s)]
y(® =h(®)
Frequency Response:

It is representation, in which frequency domain analysis is done using the Fourier Transform

o5
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Stability:

It is a factor which is used to analysis the stability of the system. It is justified mathematically and
graphically based system representation.
% If the Transfer function H(s) is given, determine the poles and zeros, plot the graph
o If the poles and zeros lies only in the left hand side of the axis then the given system is
Stable System.
o If the poles and zeros lies in right hand side of the axis then the given system is Unstable
System.

o If the poles and zeros lies in the margin, then the system is Marginally Stable System.

[

Stable Unstable

\.
Y S Marginally
s

% If the Impulse Response h(t) is given, the stability is verified by the formula. _EO |h('[)| dt <o
% If the response y(t) of the system is given in terms of x(t) ; Determine the impulse response h(t) by
substituting J(t) in x(t) and followed by using the above formula.
Check whether the given system is stable or unstable system
1 h(t) = — e Rey(r)
Rc

0

[Ihojdt= | Rie%%u(t)|dt =Rije‘%<c dt=Ri ¢ :Ri[0+ RC]=1
2 ? IRc cy c _%?C R
The given system is stable
2. ht)=e*u(t-1)
fInot = f (el = fle*|ot=| < |
t)dt=| |e“u(t-1)dt=|le|dt=]| — | =0
fpoje- fleue-slae=ea| 7
The given system is unstable
5 H(s)=—
(s+D(s+2)
The poles are s=-1, s=-2; It lies in the left hand side of the axis, so the system is
stable.
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Causality:
h(t)=0;t<0
Basic Formulae
With Initial Conditions Without Initial
Conditions
L [ dx(t) } sX (s) — x(0) sX (s)
| dt
. [ d2x(t) s2X (s) — sx(0) — x(1) s2X (s)
| dt?
. 'd3x(t)} $*X (s) —5°x(0) — sx(1) — x(2) $*X (s)
dt?

1. The input — output relation of a system at initial rest is given by 9 dyz(t) + di;(t) 3y(t) = d);(t) +2x(t)
t t t

using the Laplace Transform. Find the system transfer function, frequency response, impulse

response

Given: dyz(t) +4 di;(t) 3y(t) = ( ) +2X(t) Initially at rest
Taking Laplace Transform on both sides
d’y(t) 4 O dx(t)
L{ X } L{ A } L[3y()] = L[ X } L[2x(0)]
S%Y (S) +4sY (S) +3Y (s) = sX(8) +2X(s)

Y(S)[s2 +4s+3]: X(s)[s+2]

i) Transfer Function :: H(S) = Y(s) =— s+2
X(s) s“+4s+3
. . jo+2
ii) Frequency Response :: S— jo ; H(jo)= (ja))zjc—l:Zja)JrB
iii) Impulse Response
H(s) = S+2 _ s+2 1

s +4s+3  (s+1)(s+3)
H(s) = A N B _AGs+3+B(s+) 5
(s+1) (s+3) (s+1)(s+3)
Equating the equations 1 & 2 we obtain
s+2=A(s+3)+B(s+1)
To determine A and B

Put s=-3:: -3+2=A(-3+3)+B(-3+1) =-1=A0)+B(-2) = B=%

Put s=-1:: —1+2=A(-1+3)+B(-1+1) = 1=A(2)+B(0) = A:%
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H h

(s+D (s+3)

Taking Inverse Laplace Transform ht) = L' [H(s)] =L { % } 4 L{ % }
(s+1)

1 —t -3t
h(t) = E[e +e ™ Ju(t)
Problem for Practice:

1. Consider an LTI system whose tesponse to the input (eft +e’3‘)u(t) is (Ze’t —2e™ )u(t) . Find

the system impulse response.

-2t

2. For a continuous time LTI system defined by its impulse response h(t) =e“u(t) . Determine its

transfer function , unit step response and response for the input X(t) =e™'u(t).

d’y(t) _,dy(® _ :
3. For an LTI system defined by e 4 ot +5y(t) =5x(t) . Find the response of the system
: _ : L . dy®)| _
y(t) for an input of x(t)=u(t) with an initial conditions of y(0) =1 e
t=0
4. Using Laplace Transform find the output y(t) of an LTI system represented by
2
d dilz(t) +3 dyit) +2y(t) = X(t) for an input X(t) = 5(t) assume that the system is initially at rest.

Block Diagram Representation:
1. Realize the given transfer function in terms of direct form-I, direct form-II, cascade and parallel

H(S) =——————". [The same problem is also given in the form of differential equation
s +7s+12

4y di’f) +12y(1) =4 ;ﬁ‘) +3 dzit) +2x(1)]

dt’
i) Realization of Direct form-I & Direct Form-II
2
S°+3s+2
H(s)=—————= [Divide numerator & denominator by s’]
S°+7s+12

s' s
= - -
(s +7s+12y 107 % 1_[__%)
g2 S S S S

2
(s +3s+2% 13,20 4.8.2
H(S)— ST _ 37 S

x(s) N y(s)
| \/ /
1 1
s B
NG 7
/e N\

-12
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x(s) Nl y(s)

? S

c

\/
- —
4

<——>

ii) Realization of Cascade form:
H(s) = S°+3s+2  (s+1)(s+2) (s+]) L(5+2)
S s247s+12  (s+3)(s+4) (s+3) (s+4)
(s~ NI~ yls)
(1+1) (1+1) v
H,(s) = (s+D) _ S) _ S 1
(s+3) (1_'_3) (l_(_:%jj 4 s
° S /1 N2
N V’
2 2 vlc\r_\ I\1 m\ll(\
e <s+2)_(“s): ) L
=7 (1+ 4) (1_(_4D g
; ° 4 N2
N L
I' ___________________ | I' ______________________ |
X(S)E/‘\ ||\1 /\i Er\ I 1 /\i y(s)
:T T: | T:
| -| N~ L e N |
| 3N | 1 : | | |
: H,(s) Lo H,(9) :
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iif)

Realization of Parallel form:

s+3s+2  s°+3s+2 A

H(s)=

H(s) = A(s+4)+B(s+3)

(s+3)(s+4)
Equating the equations 1 & 2
s +3s+2=A(s+4)+B(s+3)
To Determine A & B

175412 (513)(514) (543) (s+4)

s=—4=>(-4)"+3(—4)+2=A(-4+4)+B(-4+3)=16-12+2=-B=B=6

s=-3=(-3)" +3(-3)+2= A(-3+4) +B(-3+3) =9-9+2= A= A=2

__2 6
T (s+3) (s+4)

H (s)

X(s)

2 s

L

2 2
Hl(S) = >

X(s)

M\

Unit 3
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Problem for Practice:
1. Realize in direct form-II

3
a H(s)= 3s +223+3
28" +3s°+0.55+1
2
b, H(s):82+23+3
S*+4s+7
c. |-|(s):5_Jrl
S+2
d. H(s)=——
s+1
2. Realize in Cascade & Parallel form
2
a H(s)= 52 +3s+2
S°+7s+12
1
b. H(S)=———
() s?+3s+2
c. H(s)= (s+2)gs—5)
(s+4)(s*+s+3)
2
d. H(s)= S°+2s

(s+6)(s*—7s+10)

Convolutional Integral:

It is technique which is used to determine the output of the system.

y(t) = x@®)*h(t) = [~ x(z)h(t-7)dz
Properties of Convolutional Integral

i) Commutative : X(t) *h(t) = h(t) * x(t)
i) Distributive : X(t) *[h, (t) + h, ()] = x(t) *h, (t) + x(t) * h, (t)
iii) Associative :  X(t) *[h, (t) *h, (t)] = [x(t) *h,(t)]*h, (t)

Interconnection of Impulse Response

1. Series Combination

X(t) —> h, (t) > h, (t) y(t)

J

X(t) —{ h(t) =hO*h,(t) >y

Unit 3 Page 8
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2. Parallel Combination

—>  h()
x)—>| T =
—> hz (t)

X(t) —{ h(t)=h(t)+h,(t) ——y®

1. Find the convolution Integral for the following signal.
a. x(t)=eu(t) & x,(t)=e™u(t)

y(t) = [x(@)h(t—7)dz
0
y(t) = j e u(r)e ™ ut—7)dr
0
y(t) = j e e P Iy(ut—7)dr
0
t t
y(t) = Ie‘a’e‘b“")d T= je‘a’e‘b‘e’”d T
0 0
(b-a)
= & i [e(kHi)r]t — e [e(bfa)t _1] _ e I:e—atebt _1]
(b—a) o (b-a) (b—a)

o E 2 [e —e™ Ju(t)

2. X (t)=sintu(t) & x,(t) =u(t)

t t pl-a) t
_ e—btje—arebrdz_ _ e—btj.e(b—a)rdz_ _ e—bt
0 0 0

y(t) =

y(©) = [ x(@)ht-7)dr

Il
O ey

y(t) = jsin ru(r)u(t—7)dzr = jsin rdr = [—cos r]; =—cost+1 =[1—-cost]u(t)
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3. Determine the Convolutional Integtral

O AN

<€ > < >

y() =jx(r)h(t ~7)dz

1 J\h(_z)
y(t) = [ x()h(-7)dz
t=0 -
y@®)=0 B R
0.25 h(0.25—1)
y(t) = j x(r)h(0.25-7)d7 i
0
=0.25 y(0.25)=0.25-0
y(0.25)=0.25 < >,
05 h(0.5-1)
y(t) = j x(r)h(0.5-7)dr T
0
t=0.5 y(0.5)=0.5-0
y(0.5)=0.5 < = - >
0.75 A P0.75-1)
y(t) = j x(r)h(0.75-7)dr
0
=075 y(0.75)=0.75-0
y(0.75)=0.75 “— p—
1 A a(l-1)
y(t) = [ x(x)h(l-7)dz
0
=1 y()=1-0
y@=1 < —>,
1.25 A R(1.25-1)
y(t) = [ x(x)h(1.25-7)dr
0.25
=125 y(1.25)=1-0.25
y(125) == 075 < 2= 1_25; L
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I3

y(t) = lf X(z)h(1.5-7)dr

=15 y(1.5)=1-0.5
y(15) =05 L 15 f

N
A i

L7 (175-1)

y(t) = j x(r)h(L.75-7)dr
0.75

=1.75 y(1.75) =1-0.75

y(1.75) =0.25

A
A J

y(t) = _2[ x(z)h(2-7)dr
=2 y(2) =B

L
A J

State Variable Matrix Representation
State equation: Q* = AQ + BX

Output equation: Y =CQ+ DX

Determination of Transfer Function:

Q* = AQ+BX (Taking Laplace Transform on both sides)
sQ(s) = AQ(s) +BX(s)
sQ(s)— AQ(s) = BX(s)
Q(s)(sl =A)=BX(s)
_ BX(s)
Q(s) = I A)

Q(s) = (sl —A)'BX(s)

Y =CQ+ DX (Taking Laplace Transform on both sides)
Y (s) =CQ(s)+DX(s)
Y (s) =C(sl — A)*BX(s)+DX(s)
Y (s)=[C(sl —A)*B+D]X(s)
Y(s)

H (s) :m:[C(sl —~A)'B+D]
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: 2 -1 0
1. Determine the Transfer Function |:ql.:| = { }{ql } +{ j| X(t) y= [0 l]|:ql:|
02 -1 2 ]9, 1 02

2 - 0
Given : AZ{ };BZ{ };C=[O 1];D=0
-1 2 1

H(s)=C[sl - A]*B+D

PN

s—-2 1
sl —A=
[ 1 s—Z}

(sl — A" = adj(sl — A)
det(sl — A)

) s-2 -1
adj(sl—A):{_1 8_2}

det(sl —A)=(s—2)°-1=s+4-45-1=5°—-45+3

s—2 -1
2 2
(sl —A)! = $°—4s+3 s —4s+3
-1 s—2

s?—4s+3 s?—4s+3

H(s)=C(sl —A)'B+D

s—-2 -1

s®—4s+3 s?-4s+3||0
H(s)=(0 1 +[0
=0 1 43 8 m[]

| s°—4s5+3 s°—4s+3

=

s?—4s5+3
H(s)=|0 1
(s)=[0 1] . >

| s°—4s+3

S—2

H(S)=—5———
() s?—4s+3
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+5x(t
dt® dt? dt dt? ®)

2. Determine the A,B,C,.D

Given

d’y(t) ,d’y(t)  _dy(t
: y§)+3 d¥§)+5 yi)+6y(t):

Taking Laplace Transform on both sides

dy() d?y(t) dy(t) [ dx(t)
L{ ar }LF e }L{S ot }+L[6y(t)]_l{—dt2 }+L{6 it }+L[5x(t)]

%Y (5) +3s%Y (8) +5SY (S) + 6Y (S) = s X (S) + 65X (S) +5X ()
[s® +3s® + 55+ 6]Y (s) =[s® + 65 +5]X (s)
_Y(s) _ [s"+6s+5]

2
d th) +6 ax(t) +5x(t)
dt dt

H -
®) X(s) [s®+3s®+5s+6]
1.6 5 1. 6.5
H(s) = —S 2 s s s §°
1+§+£+E 1_ _§_£_6
s 2 ¢ s s* §°
-
(/ a;
1
S
1 * =
a\ -3 | g | C ql q2
i | @ ~ q; = q,
1
s d; =—30, — 50, — 64, + x(t)
-5 (ePS 6
é; | | JD y(t) = g + 60, +50,
-6 | q:L | 5
| |
a; 0 1 0¢|oq 0 O,
g|=|0 0 1/{aq,|+|0]|x(t) y=[5 6 1]|a, |+[0Ix(t)
q’; -6 -5 -3 q3 1 QS
O 1 O 0
A=l0 0 1 B— C=[5 6 1] D =[0]
-6 -5 -3

Unit 3 Page 13



